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2.1 INTRODUCTION 

Environmental models simulate the functioning of environmental processes. The 
motivation behind developing an environmental model is often to explain complex 
behaviour in environmental systems, or improve understanding of a system. 
Environmental models may also be extrapolated through time in order to predict 
future environmental conditions, or to compare predicted behaviour to observed 
processes or phenomena. However, a model should not be used for both prediction 
and explanation tasks simultaneously. 

Geographic information system (GIs) models may be varied in space, in time, 
or in the state variables. In order to develop and validate a model, one factor should 
be varied and all others held constant. Environmental models are being developed 
and used in a wide range of disciplines, at scales ranging from a few meters to the 
whole earth, as well as for purposes including management of resources, solving 
environmental problems and developing policies. GIs and remote sensing provide 
tools to extrapolate models in space, as well as to upscale models to smaller scales. 

Aristotle wrote about a two-step process of firstly using one's imagination to 
inquire and discover, and a second step to demonstrate or prove the discovery 
Britannica 1989 14:67). This approach is the basis of the scientific approach, and is 
applied universally for environmental model development in GIS. In the section on 
empirical models, the statistical method of firstly exploring data sets in order to 
discover pattern, and then confirming the pattern by statistical inference, follows 
this process in a classical manner. But other model types also rely on this process 
of inquiry and then proof. For example, the section on process models shows how 
theoretical models based on experience (observation and/or field data) can be built. 

Why spend time developing taxonomy of environmental models - does it 
serve any purpose except for academic curiosity? In the context of this book, 
taxonomy is a framework to clarify thought and organize material. This assists a 
user to easily identify similar environmental models that may be applied to a 
problem. In the same way, model developers may also utilise or adapt similar 
models. But taxonomy also gives an insight to very different models, and hopefully 
helps in transferring knowledge between different application areas of the 
environmental sciences. 
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2.2 TAXONOMY OF MODELS 

Using terminology found in the GIs and environmental literature, models are here 
characterized as 'models of logic' (inductive and deductive), and 'models based on 
processing method' (deterministic and stochastic) (see Table 2.1). The 
deterministic category has been further subdivided into empirical, process and 
knowledge based models (Table 2.1). The sections of this chapter describe the 
individual model type; that is, a section devoted to each column of Table 2.1 (e.g. 
see 2.3.2 for inductive models) or row (e.g. see 2.4.1 for deterministic-empirical 
models). In addition, an example of an environmental application is cited for each 
model. 

An important observation from Table 2.1 is that an environmental model is 
categorized by both a processing method and a logic type. For example, the CART 
model (see 2.3.2) is both deterministic (empirical) as well as inductive. In 
categorizing models based on this taxonomy, it is necessary to cite both the logic 
model and the processing method. 

Finally, a model may actually be a concatenation of two (or more) categories 
in Table 2.1. 

Table 2.1: A taxonomy of models used in environmental science and GIs. 

Model of logic (see Section2. 3) 

Deductive (see Inductive (see Section 
Section 2.3.1) 2.3.2) 

Model Deterministic Empirical Modified inductive Statistical models (e.g. 

based on (see Section (see models (e.g. R- regression such as USLE); 

processin 2.4) Section USLE); training of supervised 
g method 2.4.1) process models classifiers (e.g. maximum 

(see 
Section 
2.4) 

classification by likelihood) threshold 

supervised models (e.g. BIOCLIM) 
classifiers (model rule induction (e.g. CART) 

inversion) Others: geostatistical 

models, Genetic algorithms 

Knowledge Expert system Bayesian expert system; 

(see (based on fuzzy systems 

Section knowledge 

2.4.2) generated from 
experience) 

Process Hydrological models Modification of inductive 

(see Ecological models model coefficients for local 

Section conditions by use of field 

2.4.3) or lab data 

Stochastic (see Monte Carlo Neural network 

Section 2.5) simulation classification; Monte Carlo 
simulation 

For example, a model may be a combination of an inductive-empirical and a 
deductive-knowledge method. Care must be taken to identify the components of the 
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model, otherwise the taxonomic system will not work. This point is addressed 
further in the chapter. 

2.3 MODELS OF LOGIC 

2.3.1 Deductive models 

A deductive model draws a specific conclusion (that is generates a new 
proposition) from a set of general propositions (the premises). In other words, 
deductive reasoning proceeds from general truths or reasons (where the premises 
are self-evident) to a conclusion. The assumption is that the conclusion necessarily 
follows the premises; that is, if you accept the premises, then it would be self- 
contradictory to reject the conclusion. 

An example of deduction is the famous Euclid's 'Elements', a book written 
about 300 BC. Euclid first defines fundamental properties and concepts, such as 
point, line, plane and angle. For example, a line is a length joining two points. He 
then defines primitive propositions or postulates about these fundamental concepts, 
which the reader is asked to consider as true, based on their knowledge of the 
physical world. Finally, the primitive propositions are used to prove theorems, such 
as Pythagoras' theorem that the sum of the squares of a right-angled triangle equals 
the square of the length of the hypotenuse. In this manner, the truth of the theorem 
is proven based on the acceptance of the postulates. 

Another example of deduction is the modelling of feedback between 
vegetation cover, grazing intensity and effective rainfall and development of 
patches in grazing areas (Rietkerk 1998). In Figure 2.1 (taken from Rietkerk et al. 
1996 and Rietkerk 1998), the controlling variables are rainfall and grazing 
intensity, while the state variable is the vegetation community. State I in Figure 2.1 
are perennial grasses, state I1 are annual grasses and state I11 are perennial herbs. 
The diagram links together a number of assumptions and propositions (taken from 
the literature) about how a change in rainfall and grazing intensity will alter the mix 
of the state variables (viz. perennial grass, annual grass, and perennial herbs). For 
example, it is assumed that the three vegetation states are system equilibria. 
Rietkerk et al. (1996) show that according to the literature this is a reasonable 
assumption; the primeval vegetation of the Sahel at low grazing intensities is a 
perennial grass steppe. They go on to discuss the various transition phases between 
the three vegetation states and to support their conclusion that Figure 2.1 is 
reasonable they cite propositions from the literature. 

For example, transition 'T2a' in Figure 2.1, is a catastrophic transition where 
low rainfall is combined with high grazing, leading to rapid transition of perennial 
grass to perennial herbs, without passing through the annual grass stage 11. Such 
deductive models have been rarely extrapolated in space. 

In all these examples, the deductive model is based on plausible physical 
laws. The mechanism involved in the model is also described. 
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Figure 2.1: The cusp catastrophe model applied to the Sahelian rangeland dynamics (from 
Rietkerk et al. 1998). 

2.3.2 Inductive models 

The logic of inductive arguments is considered synonymous with the methods of 
natural, physical and social sciences. Inductive arguments derive a conclusion from 
particular facts that appear to serve as evidence for the conclusion. In other words, 
a series of facts may be used to derive or prove a general statement. This implies 
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that based on experience (usually generated from field data), induction can lead to 
the discovery of patterns. The relationship between the facts and the conclusion is 
observed, but the exact mechanism may not be understood. For example, it may be 
found from field observation or sampling that a tree (Eucalyptus sieberi) frequently 
occurs on ridges, but such an observation does not explain the occurrence of this 
species at this particular ecological location. 

As noted above, induction is considered to be an integral part of the scientific 
method and typically follows a number of steps: 

Defining the problem using imagination and discovery. 
Defining the research question to be tested. 
Based on the research question, defining the research hypotheses that are to 
be proven. 
Collecting facts, usually by sampling data for statistical testing. 
Exploratory data analysis, whereby patterns in the data are visualized. 
Confirmatory analysis rejects (or fails to reject) the research hypothesis at a 
specified level of confidence and draws a conclusion. 

The inductive method as adopted in science, and formalized in statistics, 
claim that the use of facts (data) leads to an ability to state a probability (that is a 
confidence or level of reasonableness) about the conclusion. 

An example of an inductive model is the classification and regression tree 
(CART) method also known as a decision tree (Brieman et al. 1984; Kettle 1993; 
Skidmore et al. 1996). It is a technique for developing rules by recursively splitting 
the learning sample into binary subsets in order to create the most homogenous 
(best) descendent subset as well as a node (rule) in the decision tree (Figure 2.2a) 
(see Brieman et al. 1984; and Quinlan 1986 for details about this process). The 
process is repeated for each descendent subset, until all objects' are allocated to a 
homogenous subset. Decision rules generated from the descending subset paths are 
summarized so that an unknown grid cell may be passed down the decision tree to 
obtain its modelled class membership (Quinlan 1986) (Figure 2.2b). Note that in 
Figure 2.2a, the distribution of two hypothetical species (y = 0 and y = 1) is shown 
with gradient and topographic position, where topographic position 0 is a ridge, 
topographic position 5 is a gully, and values in between are midslopes. The data set 
is split at values of gradient = 10" and topographic position = 1. 

The final form of the decision tree is similar to a taxonomic tree (Moore et al. 
1990) where the answer to a question in a higher level determines the next question 
asked. At the leaf (or node) of the tree, the class is identified. 

' For example in the paper by Skidmore et al. (1996), the objects were kangaroos. 
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topographic position 

Figure 2.2a: The distribution of two hypothetical species (y = 0 and y = 1) is shown with gradient 
and topographic position, where topographic position 0 is a ridge, topographic position 5 is a 

gully, and values in between are rnidslopes. 

y = 0 : 10 cases 
y = 1 : 8 cases P 

y = 0 : 5 cases 
y = 1 : 2 cases 

y = 0 : 2 cases 

Figure 2.2h: The decision tree rules generated from the data distribution in Figure 2.2a. 
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2.3.3 Discussion 

Both inductive and deductive methods have been used for environmental 
modelling. However, inductive models dominate spatial data handling (GIs and 
remote sensing) in the environmental sciences. As stated in 2.2, some models are a 
mix of methods; a good example of a mix of inductive and deductive methods is a 
global climate model (see also Chapter 4 by Reed et al. as well as Chapter 5 by Los 
et al.). In these models, complex interactions within and between the atmosphere 
and biosphere are described and linked. For example, photosynthesis is calculated 
as a function of absorbed photosynthetically active radiation (APAR), temperature, 
day length and canopy conductance of radiation. A component of this calculation is 
the daily net photosynthesis, the rationale for which is given by Hazeltine (1996). 
Some of the parameters in this calculation of daily net photosynthesis may be 
estimated from remotely sensed data (such as the fraction of photosynthetically 
active radiation) or interpolated from weather records (such as daily rainfall), while 
other constants are estimated from laboratory experiments (e.g. a scaling factor for 
the photosynthetic efficiency of different vegetation types). Thus the formula has 
been deduced, but the components of the formulae that include constants and 
variable coefficients are calculated using induction. 

Classification problems may be considered to be a mix of deductive and 
inductive methods. The first stage of a classification process is inductive, where 
independent data (usually collected in the field or obtained from remotely sensed 
imagery) are explored for possible relationships with the dependent variable(s) that 
is to be modelled. For example, if land cover is to be classified from satellite 
images, input data are collected from known areas and used to estimate parameters 
of a particular image classifier algorithm such as the maximum likelihood classifier 
(Richards 1986). The second stage of the supervised classification process is 
deductive. The decision rules (premises) generated in the first phase are used to 
classify an unknown pixel element, and come up with a new proposition that the 
pixel element is a particular ground cover. Thus, the classification of remotely 
sensed data is in reality two (empirical) phases - the first phase (training) uses 
induction and the second phase (classification) uses deduction. 

Another example of a combined inductive-deductive model in GIs  may be 
based on a series of rules (propositions) that a GIs  analyst believes are important in 
determining a process or conclusion. For example, a model has been developed to 
map the dominant plant type at a global scale (Hazeltine 1996). The model is 
deduced from propositions linking particular biome types (e.g. dry savannas) to a 
number of independent variables including: 

leaf area index 
net primary production 
average available soil moisture 
temperature of the coldest month 
mean daily temperature 
number of days of minimum temperature for growth. 

The thresholds for the independent variable determining the distribution of the 
biome type are induced from observations and measurements by other ecologists. 
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For example, dry savannas are delineated by a leaf area index of between 0.6 and 
1.5, and by a monthly average available soil moisture of greater than 65%. 

A well-known philosophy in science, developed by Popper, rejects the 
inductive method for the physical (environmental) sciences and instead advocates a 
deductive process in which hypotheses are tested by the 'falsifiability criterion'. A 
scientist seeks to identify an instance that contradicts a hypothesis or postulated 
rule; this observation then invalidates the hypothesis. Putting it another way, a 
theory is accepted if no evidence is produced to show it is false. 

2.4 DETERMINISTIC MODELS 

A deterministic model has a fixed output for a specific input. Most deterministic 
models are derived empirically from field plot measurements, though rules or 
knowledge may be encapsulated in an expert system and will consistently generate 
a given output for a specific input. Deterministic models may be inductive or 
deductive. 

2.4.1 Empirical models 

Empirical models are also known as statistical, numerical or data driven models. 
This type of model is derived from data, and in science the model is usually 
developed using statistical tools (for example, regression). In other words, 
empiricism is that beliefs may only be accepted once they have been confirmed by 
actual experience. As a consequence, empirical models are usually site-specific, 
because the data are collected 'locally'. The location at which the model is 
developed may be different to other locations (for example, the climate or soil 
conditions may vary), so empirical models of the natural environment are not often 
applicable when extrapolated to new areas. 

For empirical models used in the spatial sciences, models are calculated from 
(training) data collected in the field. Recall that inductive models also use training 
data, so a model may be classified as inductive-empirical (see 2.3.2). However, not 
all inductive models are empirical (see Table 2. I)! 

Statistical tests (usually employed to derive information and conclusions from 
a database) require a proper sampling design, for example that sufficient data be 
collected, as well as certain assumptions be met such as data are drawn 
independently from a population (Cochran 1977). A variety of statistical methods 
have been used in empirical studies, and some authors have proposed that empirical 
models be subdivided on the basis of statistical method. Burrough (1989) 
distinguished between regression and threshold empirical models; these are two 
dominant techniques in GIs.  An example of a regression model is the Universal 
Soil Loss Equation (USLE), which was developed empirically using plot data in the 
United States of America (Hutacharoen 1987; Moussa, et al. 1990). In contrast, 
threshold models use boundary values to define decision surfaces and are often 
expressed using Boolean algebra. For example, dry savannas in the global 
vegetation biome map cited in 2.3.3 (Hazeltine 1996) are defined using a number 
of factors including the leaf area index of between 0.6 and 1.5. Other examples of 
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empirical models where thresholds are used include CART (see 2.3.2) and 
BIOCLIM. 

The BIOCLIM system (see also Chapter 8 by Busby) determines the 
distribution of both plants and animals based on climatic surfaces. Busby (1986) 
predicted the distribution of Nothofagus cunninghamiana (Antarctic Beech), the 
Long-footed Potoroo (Potorous longipes), and the Antilopine Wallaroo (Macropus 
atztilopinus), and inferred changes to the distribution of these species in response to 
change in mean annual temperature resulting from the 'greenhouse effect'. Nix 
(1986) mapped the range of elapid snakes. Booth et al. (1988) used BIOCLIM to 
identify potential Acacia species suitable for fuel-wood plantations in Africa, and 
Mackay et al. (1989) classified areas for World Heritage Listing. Skidmore et al. 
(1997) used BIOCLIM to predict the distribution of kangaroos. 

The basis of BIOCLIM is the interpolation of climate variables over a regular 
geographical grid. If a species is sampled over this grid, it is possible to model the 
species response to the interpolated climate variables. In other words, the 
(independent) climate variables determine the (dependent) species distribution. The 
climate variables used in BIOCLIM form an environmental envelope for the 
species. Firstly, the BIOCLIM process involves ordering each variable. Secondly, 
if the climate value for a grid cell falls within a user-defined range (for example, 
the 5th and 95th percentile) for each of the climatic variables being considered, the 
cell is considered to have a suitable climate for the species. Using a similar 
argument, if the cell values for one (or more) climatic variables fall outside the 95th 
percentile range but within the (minimum) 0-5th percentile and (maximum) 95- 
100th percentile, the cell is considered marginal for a species. Cells with values 
falling outside the range of the sampled data (for any of the climatic variables) are 
considered unsuitable for the species (Figure 2.3). 

In practice, there are other types of empirical models, including genetic 
algorithms (Dibble and Densham 1993) and geostatistical models (Varekamp et al. 
1996). These, and other, models do not fit into the regression or threshold 
categories for inductive and empirical models as proposed by Burrough (1989), so 
it is considered simpler and more robust not to subdivide empirical models further. 

Bonham-Carter (1994) grouped empirical and inductive models into two 
types, viz., exploratory and confirmatory. This follows the established procedure in 
statistics of using exploratory data analysis (EDA) followed by confirmatory 
methods (Tukey 1977). In exploratory data analysis, data are examined in order 
that patterns are revealed to the analyst. Graphical methods are usually employed to 
visualize patterns in the data (for example, box plots or histograms). Most modern 
statistical packages permit a hopper-feed approach to developing insights about 
relationships in the data. 

In other words, all available data are fed in the system, data are explored, and 
it is hoped that something meaningful emerges2 Once relationships are discovered, 
data driven empirical methods usually confirm rules, processes or relationships by 
statistical analysis. 

' An approach frowned upon by some scientists who believe that science should be driven by questions 
and hypotheses that determine which data are collected, and pre-define the statistical methods used to 
confirm relationships within the data set. 
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An example is taken from Ahlcrona (1988) who identified a linear 
relationship between the normalized difference vegetation index3 (NDVI) 
calculated using Landsat MSS (multispectral scanner) imagery and wet grass 
biomass (Figure 2.4). 

unsuitable 
climate 

climatic 
variable I marginal 

climate 

100th 
percentile percentile suitable climate 
marginal suitable for species 

. - - - - - - - - - 

: : j - 
90th 
percentile 

climatic 
variable 2 

+ suitable , - 
100th 
percentile 
marginal 

Figure 2.3: Possible BIOCLIM class boundaries for two climatic variables. 

Regression was used to calculate a linear model between the dependent (wet grass 
biomass) and independent (MSS NDVI) variables with a correlation coefficient of 
0.61. 

A derivative of the Universal Soil Loss Equation (USLE) is the Revised 
Universal Soil Loss Equation (RUSLE), which is used to calculate sheet and rill 
erosion (Flacke et al. 1990; Rosewell et al. 1991). The RUSLE model is an 
interesting example of a localized empirical model that has been modified (using 
deduction) and then reapplied in new locations. 

NDVI is a deduced relationship between the infrared and red reflectance of objects or land cover. 
NIR - red 

NDVI = ------ 
NIR+ red 

where NIR is the reflectance in the near infrared channel and red is the reflectance in the red channel 
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NDVI 

Figure 2.4: The relationship between MSS NDVI and wet grass biomass (from Ahlcrona 1988). 

0.00 

2.4.2 Knowledge driven models 

Biomass (kglha) 
_ 

Knowledge driven models use rules to encapsulate relationships between dependent 
and independent variables in the environment. Rules can be generated from expert 
opinion, or alternatively from data using statistical induction (such as CART 
described in 2.3.2). The rules can directly classify (unknown) spatial objects (grid 
cells or polygons) by deduction, or the rules may be input to an expert system. An 
expert system is a type of knowledge driven model. 

An expert system comprises a knowledge base of rules, a method for 
processing the rules (the inference engine), an interface to the user, and the 
(independent) spatial data that are usually stored in a GIs. The structure of the 
knowledge base largely determines the appropriate inference technique required to 
generate a conclusion from the expert system. One common method for 
representing knowledge is the frame (Forsyth 1984), while a method called a 
probability matrix has also been developed (Skidmore 1989). 

The advantage of the frame structure is that knowledge is organized around 
objects, and knowledge may be inherited from one frame to the next. This is similar 
to our own 'memory', where knowledge or facts are often remembered through 
association with other knowledge. The frame structure has been utilized in some 
expert system applications (Skidmore et al. 1992). A second method of 
representing knowledge in a GIs, called a probability matrix, links the probability 
of a species occurring at different environmental positions (Skidmore 1989). 

0 5000 
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Expert systems have been developed from, and given a theoretical foundation 
based on the field of, formal logic. Following the definitions given in the 'inductive 
logic' section above (see 2.3.2), formal logic is used to infer a conclusion from 
facts contained within the knowledge base. For example, given the evidence that a 
location is a ridge top, and given that if there is a ridge then Eucalyptus sieberi 
occurs, it is possible to infer (conclude) that Eucalyptus sieberi is present on the 
ridge. Using this flow of logic (modus tollens), the evidence (E) that a ridge occurs 
may be linked with a hypothesis (H) that Eucalyptus sieberi is present, using an 
expert system. In expert systems, the evidence (E) is often called an antecedent, and 
the hypothesis (H) the consequent. In other words, given evidence (E) occurs then 
conclude the hypothesis (H): 

GIVEN -+ E -+ THEN -+ H 
antecedent consequent 
evidence hypothesis 

where E is the evidence, H is the hypothesis. 
Two methods exist for linking the evidence with the hypotheses. The first is 

forward chaining, where the inference works forward from the evidence (e.g. data 
represented at a grid cell) to the hypothesis. This is a 'data driven' process, where 
given some evidence, a hypothesis is inferred from the expert's rules and is an 
inductive model. The second method is simply the reverse, and is called backwards 
chaining. In other words, given a hypothesis, the expert system examines how much 
evidence there is to support the hypothesis. Backwards chaining is obviously a 
hypothesis driven process, and is akin to the deductive model as described in 2.3.1. 
But what happens when you do not know with 100 per cent confidence whether the 
rules are true? For example, Eucalyptus sieberi may be present only on some ridges 
in an area of interest. In such a case you need a method to handle uncertainty in the 
rules, so that the rules may be weighted on the basis of the uncertainty. 

The basis of the Bayes' inferencing algorithm is that knowledge about the 
likelihood of a hypothesis occurring, given a piece of evidence, may be thought of 
as a conditional probability. For example, a user may not be certain whether 
Eucalyptus sieberi always occurs on ridges - it may sometimes occur on 
midslopes. This knowledge may be expressed as the user being reasonably certain 
(e.g. a weight of 0.9) that Eucalyptus sieberi occurs on ridges. By linking the 
knowledge (weights) with GIs layers, the attributes of the raster cell or polygon are 
matched with the information in the knowledge (rule) base. The expert system then 
infers the most likely class at a given cell, using Bayes' Theory. 

The expert system was executed and a soil type map predicted by an expert 
system was plotted for a catchment in south eastern Australia (Skidmore et al. 
1996). When compared with a soil type map of the same soil classes as prepared by 
a soil scientist, it was obvious that the two results are similar. 53 soil pits were dug 
through the area, and 73.6 per cent of the pits were correctly predicted by the 
expert system. There was no statistically significant difference between the 
accuracy of the expert system map and the map prepared by the soil scientist, as 
tested by the Kappa statistic (Cohen 1960). 

The Bayesian expert system described above is inductive, as input data from 
field plots are used to develop rules. It is also possible to develop rules for an 
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expert system based only on existing knowledge; that is an expert would deduce a 
model about an environmental system. Such an expert system is deterministic, 
knowledge based, and of course deductive (see Table 2.1). As noted in 2.2, 
environmental models may be a mix of categories (Table 2.1). 

2.4.3 Process driven models 

Process driven models, also known as conceptual models, physically based models, 
process driven systems, white box models (as opposed to 'black box' because the 
process is understood) or goal driven systems, use mathematics (often supported by 
graphical examples) to describe the factors controlling a process. Process driven 
models are mostly deductive, and to a large extent the features of deductive models 
described in 2.3.1 are applicable. This class of models describe a process based on 
understanding and established concepts (prepositions), though parameter values 
may be estimated from data. In many respects, a process model is a pure science 
product. However, induction is also frequently used to support the development of 
process driven models particularly to estimate the value of the model parameters, or 
to refine the underlying concepts (or factors) on which the model is constructed. 
The necessity to input detailed parameters that are frequently not available make 
the task of operating and validating process-models difficult. In practice, most 
process models are limited to small, relatively simple areas (Pickup and Chewings 
1986; Pickup and Chewings 1990; Moore et al. 1993; Riekerk et al. 1998) 

Process models may be static or dynamic with respect to time. Static process 
models split complex areas of land into relatively homogeneous sub-units, and then 
use the output from one sub-unit as an input to the next sub-unit (e.g. O'Loughlin 
1986). Dynamic process models iterate the process over time and typically attempt 
to represent a continuous surface. 

An example of a process model based on deduction is the Hortonian overland 
flow model (Horton 1945): 

Where Q is the surface runoff rate, I is the rainfall intensity and F represents the 
infiltration rate and A is the catchment area. The generality of Hortonian overland 
flow has been criticised because: 

surface runoff is dependent on ground conditions, which vary spatially and 
over time 
that the calculation of surface runoff from comparisons of rainfall intensity and 
infiltration rates holds good only for very small areas 
that the Hortonian overland flow assumes average conditions over an entire 
catchment 
the independent parameters (i.e., I, F and A) in equation 2 require induction to 
estimate their coefficients. 
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Hortonian overland flow is an example of a lumped empirical model, where 
the output is calculated for a region based on average input values for the region 
and is akin in GIs  to polygon data structures. 

In contrast to lumped models, distributed process models assume that space is 
continuous, and calculations are made for each element within the area. The 
elements may be linked in order to estimate the movement between elements (for 
example, the flow of water between elements in a hydrological model, or the 
movement of air in a global climate model). Distributed models are developed 
using raster GIs.  The technology makes it simple to spatially and temporally link 
elements, allowing models to describe the flow of materials or water over a 
landscape. Such grid based models have been widely developed in hydrology (e.g. 
TOPMODEL, SHE, ANSWERS). 

The problem with distributed models is that they frequently require a large 
number of input variables of a specific resolution. Remote sensing data, or 
geostatistics, therefore generate these spatially distributed variables. However, 
major obstacles exist to the use of distributed models including: 

scaling up (e.g. from points to catchments to continents) 
models based on point data may not be applicable 
input data vary in scale and accuracy (garbage in - garbage out). 

As a number of researchers have noted, there is little evidence that complex 
process models are superior to simple empirical models for many environmental 
modelling applications (Burrough et al. 1996). 

Based on the evidence presented in 2.3.1 and 2.4.3, it would be tempting to 
simplify the taxonomy system and merge 2.4.3 into 2.3.1 (Table 2.1). However, the 
widespread use of the term 'process driven model' in hydrology, and the fact that 
process driven models is a hybrid consisting of a concatenation of a number of 
models (see 2.2), on balance resulted in this category of model remaining separate. 

2.5 STOCHASTIC MODELS 

If the input data, or parameters of the model itself, are (randomly) varied then the 
output also varies. A variable output is the essence of a stochastic model. 

An example of a stochastic model increasingly used in environmental 
modelling is the neural network model, commonly implemented using the back- 
propagation (BP) algorithm. The structure of a typical three-layered neural network 
is shown in Figure 2.5; however networks may easily be constructed with more than 
three layers. 

To train a network, a grid cell is presented with values derived from a GIs.  
For example, in Figure 2.5, the values for a cell may be elevation equal to 0.8, 
aspect equal to 0.3 and SPOT visible band equal to 0.5 (note the input values are 
normalized to range between 0 and 1). Simultaneously, an output class is presented 
to the network; the output node has an associated output, or target, value. In other 
words, an output class, such as water, may be assigned to an output node number 
(for example node 3 in Figure 2.5), and given a target value of, for example, 0.90. 
Clearly, the neural network is trained using induction (see 2.3.2). 
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The BP algorithm iterates in a forward and then in a backward direction. 
During the forward step, the values of the output nodes are calculated from the 
input layer. Phase two compares the calculated output node values to the target (i.e. 
known) values. The difference is treated as error, and this error modifies 
connection weights in the previous layer. This represents one epoch of the BP 
algorithm. In an iterative process, the output node values are again calculated, and 
the error is propagated backwards. The BP algorithm continues until the total error 
in the system decreases to a pre-specified level, or the rate of decrease in the total 
system error becomes asymptotic. Prior to the first epoch, the neural network 
algorithm assigns random weights to the nodes and introduces the stochastic 
element to the neural network model. 

Node weights are an interesting neural network parameter to adjust (Skidmore 
et al. 1997). An experimental set up was chosen that produced an accurate map of 
forest soil, and the network parameters were noted (Skidmore et al. 1997). 
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Figure 2.5: Neural network structure for the BP algorithm. 

A map of the classes predicted by the neural network shows the classification 
was reasonable. All network parameters were then held constant (e.g. number of 
learning patterns, number of nodes, number of layers, learning rate, momentum 
etc.), except that the starting weights were randomly adjusted by * 5%. Five 
different maps were produced, with each map having slightly different starting 
weights. Even though the accuracy of the training and test data is similar (ranging 
from 90 to 97 per cent training accuracy and 42 to 55 per cent test accuracy), the 
spatial distribution of the classes was quite different. Such a variation in mapping 
accuracy highlights the stochastic nature of neural networks. 
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Stochastic models have also been developed where the average (and variance) 
value for many (usually random) events are calculated. For example, randomly 
selecting the input data from a known population distribution, and then noting the 
range of output values obtained, indicates the possible range of output values, as 
well as the distribution of the output. 

2.6 CONCLUSION 

A taxonomy of GIs  models has been presented with examples from various 
application fields in the environmental sciences. Some of the model types have had 
limited application in the spatial sciences. Other model types are widely applied, 
such as inductive empirical models. 

As highlighted in this chapter, many environmental applications combine two 
(or more) categories (as detailed in Table 2.1), though the modelling process may 
appear seamless to a user. In order to use the taxonomic system, a user must 
deconstruct the application, and identify the taxonomic categories. This provides 
the user with a framework to clarify thoughts and organize material. In other words, 
a user, or model developer, can easily identify similar environmental models that 
may be applied or adapted to a problem. As taxonomy also gives an insight to very 
different models, a taxonomy hopefully helps in transferring knowledge between 
different application areas of the environmental sciences. 
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